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Abstract: One of the main problems in
qualimetric models is the extreme
quantification of the interpretation process.
Quality engineer is often overwhelmed by
raw numeric data and can hardly foresee the
major impacts of his decisions. It seems that
decision making in quality engineering
mainly consists in comparing relative
tendencies rather than estimating exact
values. A new field of Artificial Intelligence,
called Qualitative Reasoning (based on deep
knowledge models and capable of
representing qualitative features of the
phenomena) can be considered as a novel
alternative which enables one to translate
quantitative models into new models based
on qualitative calculus (qualitative algebras,
orders of magnitude operators, etc.). In this
paper we expose the different limitations of
quantitative qualimetric models and we
propose a complementary qualitative
approach, followed by an illustrative
example.

1. Qualimetric models: main
features and limitations.

The quantification of the software
development process has always been one of
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the main concern of industrialists in order to
control and increase software productivity
and reliability. The seminal works of J.
MacCall [14] and B. Boehm [15] appear as
two of the most sophisticated and detailed
qualimetric models which are nowadays
largely adopted by the Q&A community.

The general principle of a qualimetric model
is to identify and analyze characteristics
concerning the development process (i.e.
quality of the specification documents) as
well as the software product itself (size and
complexity of source code, volume of data
processed, etc.). In the MacCall model
(implemented in [2]), these characteristics
are organized in an inverted tree-like
structure. The root of the tree symbolizes the
overall software quality and is connected to
the most abstract quality concepts (i.e.
maintainability), called factors. Factors
depend to a set of criteria (i.e. traceability)
which in their turn depend on metrics (i.e.
number of comments in the source code).
Metrics form the leaves of the tree and can
be directly estimated manually or
automatically (by means of static analysis
tools).




One can compare metrics to captors which
supply the relevant information concerning the
software components under development. The
tree-like structure can be compared to a cause-
effect diagram (causality graph). The main
goal of a qualimetric model is to interpret
correctly the various interconnections among
metrics, criteria and quality factors. In such a
way a rough quantitative information, like the
number of comments, processed and
propagated in a bottom-up way, determines a
criterion like readability which in turn
influences the factor maintainability.

Since the initial theoretic foundations, one of
the first tasks of the software quality
community has been to identify and quantify
more precisely the causal dependencies
governing software characteristics [1], [3], [4].
This quantification can be based on graph
theoretic principles (i.e. the factor testability
depends on the cyclomatic number of the
control graph [16]), information theory (i.e.
the software physics approach of M. Halstead
[17]), and, more often, on statistical
evaluations. In the great majority of these
numeric models we find a relationship (often
obtained by linear regression methods) where
an abstract quality concept Q, is expressed
with a weighted sum of n (often normalized)
measures y; :

Q0= 2"’:‘#;‘

i=1n
For instance, in de Millo&Lipton [18] we find
an estimation of the effort required for
program development (PD):

[1] : PD = 2.7a+121b+26¢ 12d+22e-497

where:

a = estimated number of statements/1000,
b = estimated complexity (1-5)

¢ = number of external documents

d = number of internal documents

e = size (in words) of the database.

In [2] we find an estimation of a criterion like
the modularity of final design (MD):

[2] : MD = 0.25.(HCMPX + SCMPX
+ MPM + MLPSM)
where:

HCMPX : Hierarchical complexity of the call

graph
SCMPX : Structural Complexity of the call
graph
MPM Mean Number of Paths per
Module
MLPSM : Mean Number of Pseudo-Code

Lines per Module.
These functions are not always linear. For

instance the well-known textual complexity
estimation (C) is given in [17]:

ni..N2.(N; + N3) loga(ny + n2)

[3):C=
36.n2

where:

nj : unique operators in the program
ny : unique operands in the program
N : operator occurrences in the program
N, : operand occurrences in the program

We expose these different equations in order
to stress the extreme quantification of the
qualimetric interpretation process. Even if the
different qualimetric formulae have solid
mathematical foundations, the quality engineer
is very often overwhelmed by raw numeric
data (statistics, Kiviat diagrams, etc.) and can
hardly foresee the major impacts of its
managerial decisions. This observation is
confirmed by our experience in software
engineering consulting during the last ten
years of activity in Europe and mainly in
France (Thomson CSF, Airbus-Industrie,
British Telecom, Telefonica, CEA, etc.).
Metric's sizing and tuning are assured
heuristically and are often based on subjective
and incomplete information.




As stated in [19] the problem with many
formulae is that they contain quantities of
quite different dimensions. It is meaningless
to add a textual complexity and structural
complexity because these complexities do not
measure the same concept. The only thing we
can say is, for instance, that the testability of
the software product depends on these two
complexities. With a same reasoning we can
know that:

e In formula [1] the program development
effort increases when the number of external
documents increases,

 In formula [2] the modularity decreases
when the structural complexity of the call
graph decreases,

« In formula [3] the structural complexity of
the call graph increases when the number of
unique operators increases but, when the
number of unique operands in the program is
increasing the overall tendency cannot be
known exactly.

By adopting a flat numeric formula we
amalgamate numbers and loose the meaning
and the salient features. In the other hand, how
can we be sure on the weights we adopted
inside a formula? What does it mean to have a
maintainability coefficient equal to 0.78? Is
this number twice better than 0.39?

Finally, all qualimetric models are static. They
rarely take into account in which development
phase a specific quality metric has been
obtained. We understand that the relative
importance of a metric is not constant during
the software development. The person in
charge of the quality assurance must know
this information in order to schedule palliative
actions. Unfortunately, trying to adopt some
corrective actions during the development
process (e.g. increase code reviews, or
increase the charge of software testing for a
module) may have the opposite effects.
Software metrics are strongly correlated and
have their own dynamics. A qualimetric
formula cannot express these dynamic

relationships which are sometimes due to
intricate feedbacks. It is in fact impossible to
avoid, for decision making purposes, the
combinatorial explosion if we wish to capture
these dynamics by means of a precise numeric
qualimetric model. This is true for the majority
of engineering fields.

Practically, it seems, by our experience, that
decision making on software quality can be
compared to a high level expertise where
reasoning mainly consists in comparing
relative tendencies (e.g. if this metric is high
then this quality factor will decrease) rather
than estimating exact values (e.g. the testability
ratio equals 0.78).

We do not claim here that classic qualimetric
models are useless. We simply consider that
they have equally to be coupled with
reasoning and explanatory interpretation
mechanisms which are closer to human
practical reasoning. These considerations
naturally lead to consider qualitative
reasoning as a novel and complementary
alternative of great interest.

The next section comprises a presentation of
this new area of Artificial Intelligence. Follow
an illustration of the concept of qualitative
reasoning applied to software quality
evaluation and tracking, as well as to decision
making.

2. Qualitative Reasoning

Qualitative Reasoning (QR) is a rather new
research area of Artificial Intelligence which
aims at providing concepts and methods for
reasoning qualitatively on the basis of highly
abstracted deep knowledge models, hence
reproducing and extending human mental
qualitative reasoning schemes [7]. The key
idea is to reason from a model which only
captures the qualitative features of the
phenomena at hand. This is performed by
describing the phenomena through an
appropriate set of variables (software metrics
and quality factors in the case of quality
software analysis) and a set of constraints




expressing the relationships between these
variables.

A central issue in QR is prediction which
allows one to estimate the states (generally
values and tendencies) of the subset of
endogenous variables given the states of the
exogenous variables [13]. This is performed
by propagating the exogenous variable states
through out the constraints constituting the
qualitative model of the system. If the model
has been devised so as to capture the system
dynamics, prediction can be added a temporal
dimension since it provides the temporal
evolution of all qualimetric variables in the
future, starting from an initial global state. The
type of algorithm allowing one to do so is
referred to as a qualitative simulation
algorithm.

The prediction algorithms are closely related
to the representation formalism used for
stating the model, which is itself closely
dependent on the domain of interest. For
example, it is not surprising that the electronic
circuits domain has lead to a formalism based
on relative order of magnitude relations [10,
11], which are extensively used by the
electronic engineer when analyzing a circuit.
On the other hand, several continuous
domains fall into a description in terms of
algebraic and differential equations, which
explain the emphasis put on Qualitative
Differential Equations (QDE) models [20] by
the QR community.

The representation primitives of the QDE
formalism include arithmetic and functional
operators as well as a derivation operator.
These operators are qualitative in the sense
that they permit the representation of weak
relationships like monotonic increasing or
decreasing dependencies. These primitives
appear to be very suitable to represent the type
of dependencies existing among software
metrics and quality factors. In consequence,
the following of the paper focuses on the
QDE formalism and presents our own QDE-
based prediction algorithm SQUALE [21].

When the available knowledge on which to
build a model is incomplete and inaccurate,
performing qualitative prediction presents
several advantages compared to numerical
prediction. First, it allows to represent
inaccuracy in an explicit way by considering
qualitative values and qualitative relations
rather than to require numerically grounded
assumptions which may be difficult to work
out. By doing so, the qualitative prediction
output provides the set of all possible
estimations (when performing qualitative
simulation, these estimations are temporal
evolution) which are consistent with the lack
of precision of the model, hence summarizing
an infinity of numerical predictions. On the
other hand, qualitative estimations only outline
the significant distinctions which are
necessary to reason at a decision making level
[6].

3. Qualitative simulation

3.1 Principles of SQUALE

This work is based on the formalism defined
by B. Kuipers in his paper Qualitative
Simulation [20] with new improvements
presented in [21, 22]. A qualitative model of a
system is given by constraints between
physical parameters. Constraints may be
mathematical relations add, mult, d/ds, const,
but also two more qualitative constraints m*
and m-, which precise that there exist a
monotonic increasing or decreasing relation
between x and y. These last constraints allow
to model whole classes of real systems, which
are not necessarily equivalent to their real
solutions. But the set of predicted behaviors
provided by QSIM, will contain all the
possible real behaviors.

The qualitative value of a variable is given with
regard to the quantity space which is a totally
ordered set of landmarks. These landmarks
are purely symbolic. A qualitative state is
actually the pair position and direction of
change (gval, qdir).




The algorithm distinguishes two types of
transitions:

* P-transitions when moving from a date to an
interval of time,

* I-transitions when moving from an interval
of time to a date.

As variables are supposed to be reasonable
functions (i.e. piece wise continuously
differentiable which is the case of qualimetric
models), possibilities of state transitions are
limited by the intermediate value theorem.
Possible transitions are provided under the
form of tables [20].

If, at a given time point, several variables,
linked each other by a constraint, are all
positioned on landmarks, the set of these
landmarks is called a tuple of "corresponding
values" for the considered constraint.

The process of simulation determines first, for
each variable, the changes of possible
qualitative value and then filters these changes,
by applying rules deduced from the
constraints. If, at the end, the qualitative
simulation produces several consistent
changes of qualitative states, then the current
state has several possible successor states and
the simulation produces a branching.

Moreover, SQUALE uses considerations on
global interpretations to discard again some
inconsistent states.

Basic global filters are:

* No-change : discards the successor state if it
is identical to the current one.

* Cycle : Detects cyclic behaviors.

* Quiescence and saturation : if one variable
reaches infinity, or has all its derivatives equal
to zero, then stop the simulation.

Unfortunately, the basic algorithm presents
some fundamental limitations. The main
problem we are faced with is the combinatorial
explosion of the number of predicted
behaviors. Even in some simple cases, the tree

of possible behaviors may be unexploitable.
This explosion increases with the system
complexity. Obtaining new methods of
modeling and filtering to discard some
incongistent behaviors is the basis axis of
current research in this area.

3.2. Example

The interest of qualitative simulation is to
provide a tool for assisting modeling or
decision. Indeed, before obtaining a
sophisticated qualimetric model, it could be
relevant to test some hypothesis about
relations between variables, first from a
qualitative point of view. This avoid to specify
parameters which signification is not obvious.
In decision tasks, the aim is to provide an
envisionment of all the possible consequences
of some operating strategies. As an interactive
tool, the qualitative simulator should not
replace humans in making fundamental
choices about a system. But its efficiency is to
propagate automatically, quickly an reliably, all
the influence relations between variables, and
to provide thus a qualitative view of the
consequences of a given particular choice.

Most of qualimetric models may be
transcribed using add, m* and m~ constraints.
Dynamic relations, expressed with the
derivative constraint d/dt, are rarely
encountered. Thus, most of relations are static
and hence a qualitative qualimetric model
comes generally down to a set of confluences
like in [23]. The confluences are relations
between the tendencies of the variables which
express their mutual influence : for example in
our model we assume that efficiency is
positively inflenced by coupling and
negatively by fault tolerance, reusability,
language and generality. This assumption will
be modeled by a qualitative constraint :

efficiency = coupling - fault tolerance -
reusability - language - generality

The qualitative values have been taken in the
set {0,+,-}. We have implemented a simple
model of 14 equations of that type (see



figure). This model do not pretend to be a very
good model for qualimetry ; nevertheless, it
shows the potential interest of the method. For
example, our model predicts that if a higher
evoluted language is adopted, reliability will
increase, also will testability, coherency,
storage efficiency, but efficacity an structural
complexity will decrease. On the other hand,
the model do not allow us to conclude what
will be the resulting influence on charge.
Simulation has provide 3 states depending on
whether the charge remains constant, increases
or decreases.
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contrainte (add (Tolerance, Documentation,Pl)),
contrainte (mmoins (Coherence,Ml), [[zera, zerc]ll,
contrainte (add (Pl,Ml,Charge) ).

contrainte (add(Tolerance, Testabilite,P2)),
contrainte (mmoins (Generalite,M2), [[zero, zerolll.
contrainte (add(P2,M2,Fiabilitel).

contrainte (add (Generalite, Tolerance,N31) ).
contrainte {add (Reutilisabilite,N31,N32}),
contrainte (add (Langage,N32,83) ),
contrainte (mmoins (N3,M3), [ [zero, zero]]),
contrainte (add (Couplage,M3,Efficacite)),

contrainte (add (Modularite, Coherence,P4) ),
contrainte (add (Commentaires, P4, Maintenabilite) ).

contrainte {add (Modularite, Coherence, Testabilite)),
contrainte (add (Modularite,Coherence,PS1}),
contrainte (add (Generalite,P51,P52)),

contrainte (add (Commentaires, P52, Reutilisabilitel),

contrainte (add (Revues, Langage, P61) ,
contrainte (add (Documentation, P6, Coherence) ).

contrainte (add (Revues,Modularite,P7)),

sssssssssnssnene

contrainte (add (Complexite_ structurel le,Complexite_textuelle,NT}),

contrainte (mmoins (N7,M7),T|zexo, zerc]]),
contrainte (add (P7,M7,Tolerancel ).

contrainte (mmoins (Couplage,M8), [ [zexoc, zerall),
contrainte (add (Modularite,M8,Generalite)),

contrainte (mplus (Documentation, Completudel . [ [zero, zerolll,
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contrainte (add (Langage,Modularite,N91)),
contrainte (add (Couplage, N91,N9))

contrainte (mmoins (K9, Complexit l__;.qxtm} e}, | |zexro, zerall),

N N T T T e . contrainte (meoins (N91,Complexite_structurelle), [[zero,zeroll),
e contrainte (mplus ation ires), [[zero, zexol]l).
quantites (Temps, time, (0, inf

¥ « [0, intpl). contrainte (mplus (Langage,Eff4 ite_st )+ [ [zero,zexol ]},
quantites (Chacrge, load, [infm, zero, infp])
quantites(Fiabilite,reliability, [infm, rerc,infp]), - aniala X o aaans . exe
quantites (Efficacite,efficiency, [infm, zexo, infp]), . resolution ; the known variables are initialised
quantites(Maintenabilite,maintenability, [infm, zero,infpl), s unknown varisbles : ?

quantites (Testabilite, testability, [infm, zero, infpl),
quantites (Reutilisabilite, nuub.i;.it.y. linfm, zero, infpl), All the tendencies are considered to be steady (std)
because it is a static problem. Note however that the

L]
L]
quant ites (Coherence, coherency, [infm, zero, infp]), : qualitative values represent in reality the value of
L]
A

quantites (Tol rfault tol ', [infm, zero, infpl), the derivatives, as if the constraint net has been

quantites(Generalite,generality, [infm, zexo, infpl), ﬂlri"‘}_t'ﬂ.“:. "

quantites (Completude, completness, |infm, zero, infp]), FENATEERESERNEINE NS AR A G I R TR

quantites (Complexite_structurelle,’ structural complexity’, [infm, zero,:

quantites (Complexite_textuelle,’textual complexity’, [infm, zero, infpl),
ires aries, [infm, zero, infpl),

o effici ¥’ . linfm, zero, infp]),

initialisation(P1,?,std),
initialisation(M1,?,std),

quantites (C "
quantites (Efficacite_stockag

initialisation(P2,?

quantites (Langage, language, | infm, zero, infpl). e .
initialisation(M2,7?

quantites (Couplage, coupling, [infm, zero, infpl).

quantites (Modularite,modularity, [infm, zero, infpl).
quantites (Revues, ' code revues’,|infm, zero,infp]).

quant ites (Documentation, documentation, [infm, zero, infpl),

initialisation(N31,?,std),
initialisation(N32,7,std).
initialisation(N3,?,atd).,
initialisation (M3, ?,stdl,

1 variablea ey
quantites (P1,pl, [infm, sero, infp]), initialisation (P4, ?,std),
quantites (Ml,=ml, [infm, zero,infpl),

initialisation(P51,2,std},
quantites (P2,p2, [infm, sero, infpl), initialisation (P52,7,std),
quantites (M2,m2, [infm, zero, infp]),

initialisation (P6,?,atd),
(M31,n31, [infm, zero,infp]),
quan’ M32,n32, [infm, zero, infp]).
quantites (M3,03, (infm, zero, infp]),
quantites (M3,m3, [infm, zero, infp]).

initialisation(P7,?,std).
initialisation (N7,7,std),
initialisation (M7,7,std),
quantites (P4,pd, [infm, zero, infp]), initialisation (M8,?,atd),
quantites (P51,p51, [intm, zero,infpl),
quantites (P52, p52, [infm, zero, infp]).

initialisation(N91,2,std),
initialisation (N9, ?,std),
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quantites (P6,p6, [infm, zero, infpl),
(#7,p7, [infm, zexo, infp]), initialisation (Temps,0,inc),
quan (W7,n7, [infm, zero, infp]),
quantites (M7,m7, [infm, zero, infp]).

initialisation im:r. 7,8td),
initialisation (Fiab
initialisation (Efficacite,?
initislisation (Maintenabilit
initialisation(Testabilite, d) .
initislisation {Reutilisabilite,?, atd),

quantites (M8,m8, [infm, zero, infp]).

quantites (N91,n91, [infm, zero, infp]).,
quantites (N9, n9, [infm, zero, infp]),

initialisation(Coherence,?, std) .
initislisation (Tolerance,?,std),
initislisation (Generalite,?,std),
initialisation (Completude, 7, std) , =
{nitialisation (Complexite_structurelle, ?.8td),
initialisation (Complex ite_textuelle,?,std).
initialisation (Commentaires,?, std) ,
initialisation(Efficacite_stockage, 7,8td),
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Y essssses command variables teesssscssecs

initialisation (Langage, [zero,infp],std),
initialisation(Couplage, zero,std),
initialisation(Modularite, sero,std),
initialisation (Revues, Tera, std).
initialisation (Documentation,zero, atd) .




5. Conclusions

A software engineer is able to intelligently
predict the tendencies of quality factors of a
software piece without performing heavy
numerical computations. This paper shows
that Qualitative Reasoning techniques,
emerged in Artificial Intelligence in the last ten
years, can be useful to perform the same type
of qualitative analysis. The main advantage of
this approach is that it does not require to
precisely specify the dependencies among the
different factors acting on the quality of the
software but it can work from a weak
description, which is without doubt much
more realistic. Furthermore, working with
qualitative values allows one to cover a whole
class of numeric instances, which certainly
may save much time in the analysis procedure.
On the other hand, it makes it particularly easy
to update the quality model and greatly
benefits of being a generic approach. This
paper shows that qualitative simulation allows
one to analyze the quality of a piece of
software dynamically by predicting the effects
of varying some attributes of the software at
hand. Tendency analysis and limit checking
can be easily performed.
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